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Substantiation is given for a theoretical-experimental scheme for a coherent, con- 
cise generalization of data on the hydraulic resistance of random and regular beds 

of spherical particles. 

There are two standard approaches to describing the hydrodynamics of a flow of liquid 
or gas through a bed of spherical particles. One approach, involved with the study of flow 
past a single sphere (external problem), was first suggested by Burke and Plummet [i] and was 
later developed by the authors of [2-4]. The other approach involves examination of the flow 
in the channels formed between spheres (internal problem). Representation of a spherical 
bed as a system of pore channels is closely associated with the works of Blake [5], Kozeny 
[6], Carman [7], and Ergun [8]. 

The use of a mathematical model based on the concepts of an external and an internal 
problem makes it possible to calculate the coefficients of hydraulic resistance for spherical 
beds. The coefficients calculated on the basis of existing models are close to the experi- 
mental values established for random (disordered) beds but differ significantly from those 
found for regular (ordered) beds of spheres [9]. 

In this article, we present a theoretical-experimental scheme for a coherent, concise 
generalization of data on the hydraulic resistance of random and regular beds. We examine 
the entire range of Reynolds numbers and, accordingly, all possible regimes of flow: viscous, 
viscous-inertial, and inertial. 

It is known that in the course of the transition from purely viscous to purely inertial 
flow in spherical beds, there is a smooth decrease in hydraulic resistance. The resistance 
crisis characteristic of flow past a single sphere and connected with the transition from 
laminar to turbulent flow is not seen. This makes it possible to use the same relation to 
determine the coefficient of hydraulic resistance of the bed ~ for all flow regimes. This 
relation takes the form either of the Dupuis--Forheimer formula [9] 

+~, (i) 
Re 

or the formula constructed by A. D. Al'shul' [I0] 

~=-2-a +Y~ (2) 
Re 

We will henceforth use Eq. (i) and determine the coefficients a and b from an analysis 
of limiting cases involving purely viscous (r = a/Re) and purely inertial (b = r flow 
regimes. 

We assume that the spheres in the bed are under identical hydrodynamic conditions. 
This widely used assumption allows us to represent the pressure gradient AP at the boun- 
daries of the bed in the form [ii]: 

2 I--~ ~ p~ ff (3) 
AP= 3 ~ ~ -9--_ T' 
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Thus, in order to be able to use Eq. (3) to determine the hydraulic resistance ~P of a 
spherical bed, it is important to substantiate the choice of the characteristic w and determine 
flow velocity w and determine the resistance coefficient of a sphere under constrained con- 
ditions. 

The analysis performed in [Ii] shows that an eddy-free region of flow exists in the bed, 
regardless of the flow regime. The effect of constraint of the flow on the resistance force 
associated with the body in eddy-free flow is accounted for by means of the formula 

F'4 : Fo%, (4) 

so that it is best to take the maximum velocity in the bed as the main characteristic. 
We then introduce the following assumptions as the basis for the proposed mathematical model 
of flow past a sphere under constrained conditions. 

I. We are examining a spherical bed consisting of several independent cells, each of 
which contains a sphere surrounded by a moving liquid sheath. The cells can be considered 
independent if there is no exchange of energy between a given cell and the surrounding medium 
[13]. Friction is absent on the outside surface. 

2. The mutual effect of the spheres in the bed is such that vorticity is localized in 
a thin layer of liquid on the surface of the spheres. Outside of this layer, the flow can be 
considered irrotational. 

3. In the spherical bed, the flow decomposes into jets. The interaction of these jets 
within the confines of a given cell can be ignored. 

We will examine viscous (slip) unbounded flow past a sphere with vorticity localized in 
a thin layer on the sphere's surface. Potential flow exists outside this layer. The com- 
ponents of velocity on the external boundary of the vortex region appear as follows in 
spherical coordinates 

~v+ = 3 ~sinO, ~v+=O. (5) 
2 

The principle of the minimum of the dissipation of mechanical energy [13] is valid for 
any viscous flow. In accordance with this principle, energy cannot be localized, such as 
in a boundary layer. We therefore asume that the thickness of the vorticity layer is so 
small that energy dissipation in it can be ignored. Such an assumption leads to the model 
of a vorticity layer with vanishing strain [ii]. This model will be reduced here to repre- 
sentation of a boundary flow in the form of superimposed eddies moving over the surface of 
the sphere. Having chosen the center of the sphere as the pole of motion in this case, 
we obtain the following for the velocity on the external boundary of the vorticity layer in 
accordance with the Cauchy--Helmholtz formulas 

1 w+ : , r+o~, ~ + =  O, 
2 (6) 

where m is the vorticity of the layer. 

Combining the internal (6) and external (5) solutions leads to the condition 

---- 3m sin O/r+. 
(7) 

We will make use of the following technique from the theory of small perturbations: 
we will transfer the boundary conditions from the real surface to the undisturbed surface. 
Such a transfer introduces an error of second-order smallness in the boundary conditions. 
In accordance with this, we will ignore the thickness of the vortex region on the surface 
of the spheres. 
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The work done by the force caused by the stress on the surface of the sphere per unit 
of time Fw must be equal to the rate of energy dissipation. The latter quantity can be 
calculated on the basis of the well-known theorem from the dynamics of viscous fluids [14] 

E = 2p Wo~O dS. 
, 2 Or 

( 8 )  

On the potential-flow side, m = 0 [15]: 

E = - - ~  I O~ dS--- -6~d~w 2. 
5 Or 

(9) 

In deriving Eq. (9), Batchelor [15] failed to note that energy dissipation is assumed 
to be absent in the vorticity localization region. Without this assumption, it is impossible 
to ignore the first term in the right side of Eq. (13). This was also pointed out by G. Yu. 
Stepanov in [15]o A detailed analysis of the significance of this assumption can be found 
in [ii]. 

In accordance with (5), the degree of compression of the potential flow is equal to 
~0 = 3/2. With allowance for (4) and (9), we find that under constrained conditions each 
sphere is acted upon by the force 

F = Fo#~/~ z . . . . .  8 adpw/~Z, ( t 0 )  
3 

while the resistance coefficient, calculated from the maximum flow velocity in the neighbor- 
hood of the sphere, is equal to 

64 21,3 (11)  

3Re Re 

This formula makes it possible to calculate the coefficient of hydraulic resistance of 
random and regular spherical beds in the case of a viscous flow regime. It serves as the 
basis for calculation of the resistance coefficient from the maximum fluid velocity in the 
bed and calculation of the Reynolds number from the velocity in front of the bed. A com- 
parison was made in [ii] of the resistance coefficients calculated from Eq. (ii) and deter- 
mined from well-known experimental data in accordance with the formula 

( = .  2 e~ 2 2AP d (12)  

3 1 - -  g pw z H 

The theoretical values of the resistance coefficient agree satisfactorily with the experi- 
mental values. 

To determine the resistance coefficient for a purely inertial flow regime, we will 
assume that most of the energy loss of the flow within a spherical cell is due to the ex- 
penditure of energy on expansion of the jet. The losses from compression, rotation, and 
friction will be ignored. 

For attached flow past the sphere, the expansion of the flow within the cell is due 
only to its geometry. In this case, the resistance coefficient can be determined in accord- 
ance with the approach taken by M. A. Gol'dshtik [2]. The coefficient is thus determined 
from the viewpoint of the external hydrodynamic problem [ii]: 
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TABLE i. Comparison of Theoretical and Experimental Data 

Type of 
arrangement 
[161 

ubic 
rrlnoEnombic 
hombic*: 
hombic*! 
irhombie 
irhombic 
etrahedrai 
etrahedral* 
ctahedral 

Disordered 

0 , 4 7 6 4  

0,3954 

0,3019 

0,2595 

0,214 
O, 093 

0,214 

0 ,093  

Calculation 

a b 

0 , 2 3  

i 0,20 
0,20 
0,36 

21,3 0,20 
O, 17 
0,17 
0,17 
0,15 

Expt.l 19] 

~ 
22 0,26 
24 0,28 
22 0,25 
22 0,38 
20 O, 24 
20 0,20 
22 0,16 
22 0,16 
22 0,20 

0,483 [ O, 

0,4151 O, 

0,403 1 O, 

O, 324 1 O, 

0,293 O, 
0,268 O, 

*Beds with blocked channels. 

b 
cal- expt. 
cula~ 
tion [2o1 

224 0,23 0,23 

123 0,33 0,33 

0.19 0,30 224 0,36 

0,27 0,25 123 0,23 

0,22 135 0,22 0,23 
135 0,16 0,16 

b = 2  ~ \ " ]  { 1 - -  $~ ~ , (13 )  1--4 

An analysis of the geometric characteristics of spherical beds was made in [16]. 
the main relations are the following: 

~,' = 1 - -  6 (l - -  ~) (h/d) 2 (I - -  hid), 

Among 

(14) 

9 i__ 4 
hid - "" ( 1 5 )  

3 l - - s  

With allowance for the Leibenzon-Bogoyavlenskii formula ~ = 0.61E 1-4 [17], Eq. (13) is 
simplified to the following form [18] in the range e = 0.26-0.48 for random spherical beds: 

b 1,25s 1'5 (16)  

The model of attached flow cannot be used for all sphere arrangements. It is valid 
only for beds with blocked channels. In beds of spheres with through channels, local com- 
pression and subsequent expansion of the jets cause their separation from the surface of the 
spheres [17]. Under these conditions, the resistance coefficient of a sphere in the bed is 
determined not only by the geometric characteristics of the bed, but also by the angle of 
expansion of the jet. These factors can be taken into account in a model of jet flow in a 
spherical bed from the viewpoint of the internal hydrodynamic problem if, following R. G. 
Bogoyavlenskii [17], we take ~ = 15 ~ for the angle of expansion of the jets in the cells. 

In accordance with the Bord--Carnot formula, the resistance coefficient for a jet in a 
cell calculated on the basis of the maximum velocity in the jet is equal to 

), = (l  -- fV. ( 1 7 )  

For regular beds with through channels, the degree of expansion of the jet f can be 
calculated from geometric relations [ii] 

%/~  + tg2~ - -  l 2 -- I tg i~ 
l = r - F  r l  - -  ro - -  2 r  ( h / d )  tg~}, m ,  1 4,- t g ~  ' 

r~ =: r o -- m tg ~ -t- 2r (h/d) tg ~, f = (rotr2) ~. 

( 1 8 )  
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In a hexagonal arrangement of spheres, r 0 = 0.227r; r I = 0.153r. In a cubic arrangement, 
r 0 = 0.523r; r I = 0.414r. 

The resistance coefficients of a jet ~ and a sphere ~ in a bed are connected by the 
relation 

2 ~ d ( 1 9 )  

= 3 1 - - ~  h 

It is evident from the table that the theoretical values of the coefficients a and b 
agree satisfactorily with the experimental values. The values of b for different beds change 
within the range 0.16-0.38 and are grouped around the resistance coefficient for a single 
sphere. The latter is equal to b 0 = 0.45 ~[ = 0.2 in apurely intertial flow regime [ii]. 

Thus, model (11-13), (16-19) has made it possible to standardize the calculation and 
representation of data on the hydraulic resistance of random and regular spherical beds 
within a broad range of Reynolds numbers. 

NOTATION 

[, k, coefficients of hydraulic resistance of a sphere and a jet in a bed; d, r, dia- 
meter and radius of sphere; H, h, height of bed and distance between adjacent rows of spheres; 
~, m, r 0, r I, r 2, geometric parameters of a cell with through channels; s, porosity of the 
bed; f, degree of expansion of the jet in the cell; ~, angle of expansion of the jet; ~', ~, 
relative maximum and minimum through sections in the bed; ~0, degree of constraint of the 
flow in the neighborhood of the sphere with unbounded flow; w, wmax, velocity of the liquid 
in front of the bed and maximum velocity in the bed; w0, Wr, components of fluid velocity 
in spherical coordinates with the pole at the center of the sphere; w, vorticity; F, F 0, 
forces due to stresses on the surface of the sphere in the bed and in the unbounded flow; 
E, rate of energy dissipation; Re = pwd/~, Reynolds number; p, ~, density and absolute 
viscosity. 
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WAVE REGIME OF CONSOLIDATION OF A POROUS COMPRESSIBLE 

MEDIUM 

N. N. Zhilyaeva and A. M. Stolin UDC 671.762 

An analytical solution in the form of a compression wave is found to the problem of 
the consolidation of a porous medium. Questions relating to the validity of the 
solution are examined. 

In the study of the problem of the consolidation of a viscous compressible medium in 
the theory of hot pressing [i, 2], it is customary to ignore the inertial and nonsteady 
terms in the equations of motion and to replace these equations by simpler conditions of 
equilibrium [3-5]. This simplication is usually connected with small Reynolds numbers Re. 
The smallness of Re for the hot pressing of hard alloys is based on approximate calcula- 
tions [4]. In this case, the initial variation of density in the material is important 
only in regard to the scale factor and has no effect on the character of the dependence of 
density on time. The perturbation from the piston is transmitted instantaneously to 
all discrete volumes of material. Such a consolidation regime has been called the regular 
regime [5]. 

Strictly speaking, the validity of ignoring inertial and nonsteady terms in the equations 
of motion depends not only on the smallness of Re, but also on the value of the partial deri- 
vatives of velocity with respect to the coordinates and time. At the same time, the inertia 
of the medium itself accounts for several fundamental characteristics of the process. It 
is important that the perturbation from the piston is not transmitted instantaneously to 
all discrete volumes in such media. Because this is the case, the preconditions are estab- 
lished for the formation of a compression wave in the porous medium. In connection with this, 
it is interesting to examine the problem of the compression of a porous medium with allowance 
for its inertia. In the present investigation, we seek to study the possibility of the occur- 
rence of consolidation regimes other than the regular regime by solving the problem in the 
form of a compression wave. Here, we make use of the concept of intermediate asymptotes 
[6]. The solution of the problem of the compression of a porous medium with allowance for 
inertial and nonsteady terms allowed us to find the necessary conditions for occurrence of 
the regular consolidation regime - the conditions under which we can ignore the inertia of 
the medium. It is shown that the realization of both transitional and wave regimes of con- 
solidation is possible. Distributions of density, velocity, and stress are found for materials 
which undergo consolidation in the wave regime. 

Formulation of the Problem. We will examine the axial compression of a viscous porous 
medium under the influence of a piston moving from right to left. The motion of the medium 
during its consolidation is described by the equations of continuity and motion together with 
rheological relations and boundary conditions 

op/ot + o (9u)/ox = o, (1) 

pp~ (OU/Ot + UOU/Ox) = O~/Ox, 
9 m 

Cl = (4~1/3 + ~) OU/Ox = % OU/Ox, 
t - - 9  

(2) 
(3) 
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